我们介绍RLDS(强化学习数据集),一个生态系统,用于在连续决策(SDM)的上下文中记录,重播,操纵,注释和共享数据,包括加强学习(RL),从演示,离线RL或I模仿学习学习。 RLDS不仅能够再现现有的研究和轻松生成新数据集,而且还加速了新的研究。通过提供标准和无损的数据集格式,它可以在更广泛的任务中快速测试新的算法。 RLDS生态系统使数据集很容易在没有任何信息丢失的情况下共享数据集,并且在将各种数据处理管道应用于大集的数据集时,在底层原始格式不可知。此外,RLD提供了用于收集由合成代理或人类生成的数据的工具,以及检查和操纵收集的数据。最终,与TFD的集成有助于与研究界共享RL数据集。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have achieved great successes in many learning tasks performed on graph structures. Nonetheless, to propagate information GNNs rely on a message passing scheme which can become prohibitively expensive when working with industrial-scale graphs. Inspired by the PPRGo model, we propose the CorePPR model, a scalable solution that utilises a learnable convex combination of the approximate personalised PageRank and the CoreRank to diffuse multi-hop neighbourhood information in GNNs. Additionally, we incorporate a dynamic mechanism to select the most influential neighbours for a particular node which reduces training time while preserving the performance of the model. Overall, we demonstrate that CorePPR outperforms PPRGo, particularly on large graphs where selecting the most influential nodes is particularly relevant for scalability. Our code is publicly available at: https://github.com/arielramos97/CorePPR.
translated by 谷歌翻译
贝叶斯优化(BO)算法在涉及昂贵的黑盒功能的应用中表现出了显着的成功。传统上,BO被设置为一个顺序决策过程,该过程通过采集函数和先前的功能(例如高斯过程)来估计查询点的实用性。然而,最近,通过密度比率估计(BORE)对BO进行重新制定允许将采集函数重新诠释为概率二进制分类器,从而消除了对函数的显式先验和提高可伸缩性的需求。在本文中,我们介绍了对孔的遗憾和算法扩展的理论分析,并提高了不确定性估计。我们还表明,通过将问题重新提交为近似贝叶斯推断,可以自然地扩展到批处理优化设置。所得算法配备了理论性能保证,并在一系列实验中对其他批处理基本线进行了评估。
translated by 谷歌翻译
序数模式的统计分析的最终目的是表征它们诱导的特征的分布。特别是,了解大类时间序列模型的对熵统计复杂性的联合分布将允许迄今无法获得的统计测试。在这个方向上工作,我们表征了Shannon经验的渐进分布,用于任何模型,在此模型中,真正的归一化熵既不为零也不为零。我们从中心极限定理(假设大时间序列),多元增量方法和其平均值的三阶校正获得了渐近分布。我们讨论了其他结果(精确,一阶和二阶校正)有关其准确性和数值稳定性的适用性。在建立有关香农熵的测试统计数据的一般框架内,我们提出了双边测试,该测试验证是否有足够的证据拒绝以下假设,即两个信号产生了具有相同Shannon熵的顺序模式。我们将此双边测试应用于来自三个城市(都柏林,爱丁堡和迈阿密)的每日最高温度时间序列,并获得了明智的结果。
translated by 谷歌翻译
对于诸如搜索和救援之类的苛刻情况下,人形生物的部署,高度智能的决策和熟练的感觉运动技能。一个有前途的解决方案是通过远程操作通过互连机器人和人类来利用人类的实力。为了创建无缝的操作,本文提出了一个动态的远程组分框架,该框架将人类飞行员的步态与双皮亚机器人的步行同步。首先,我们介绍了一种方法,以从人类飞行员的垫脚行为中生成虚拟人类步行模型,该模型是机器人行走的参考。其次,步行参考和机器人行走的动力学通过向人类飞行员和机器人施加力来同步,以实现两个系统之间的动态相似性。这使得人类飞行员能够不断感知并取消步行参考和机器人之间的任何异步。得出机器人的一致步骤放置策略是通过步骤过渡来维持动态相似性的。使用我们的人机界面,我们证明了人类飞行员可以通过地位,步行和干扰拒绝实验实现模拟机器人的稳定和同步近距离运行。这项工作为将人类智力和反射转移到人形机器人方面提供了基本的一步。
translated by 谷歌翻译
Teleperation已成为全自动系统,以实现人类机器人的人体水平能力的替代解决方案。具体而言,全身控制的远程运行是指挥类人动物的有前途的无提手术策略,但需要更多的身体和心理努力。为了减轻这一限制,研究人员提出了共享控制方法,结合了机器人决策,以帮助人类完成低级任务,从而进一步减少了运营工作。然而,尚未探索用于全身级别的人型类人形端粒体的共享控制方法。在这项工作中,我们研究了全身反馈如何影响不同环境中不同共享控制方法的性能。提出了时间衍生的Sigmoid功能(TDSF),以产生障碍物的更直观的力反馈。进行了全面的人类实验,结果得出的结论是,力反馈增强了在不熟悉的环境中的全身端粒化表现,但可以在熟悉的环境中降低性能。通过触觉传达机器人的意图显示出进一步的改进,因为操作员可以将力反馈用于短途计划和视觉反馈进行长距离计划。
translated by 谷歌翻译
视频稳定在提高视频质量方面起着核心作用。但是,尽管这些方法取得了很大的进展,但它们主要是在标准天气和照明条件下进行的,并且在不利条件下的性能可能会差。在本文中,我们提出了一种用于视频稳定的综合感知不良天气鲁棒算法,该算法不需要真实数据,并且只能在合成数据上接受培训。我们还提出了Silver,这是一种新颖的渲染引擎,可通过自动地面提取程序生成所需的训练数据。我们的方法使用我们的特殊生成的合成数据来训练仿射转换矩阵估计器,避免了当前方法面临的特征提取问题。此外,由于在不利条件下没有视频稳定数据集,因此我们提出了新颖的VSAC105REAL数据集以进行评估。我们将我们的方法与使用两个基准测试的五种最先进的视频稳定算法进行了比较。我们的结果表明,当前的方法在至少一个天气条件下的表现差,即使在一个具有合成数据的小数据集中培训,我们就稳定性得分,失真得分,成功率和平均种植方面取得了最佳性能考虑所有天气条件时的比率。因此,我们的视频稳定模型在现实世界的视频上很好地概括了,并且不需要大规模的合成训练数据来收敛。
translated by 谷歌翻译
糖尿病性视网膜病变(DR)是发达国家工人衰老人群中失明的主要原因之一,这是由于糖尿病的副作用降低了视网膜的血液供应。深度神经网络已被广泛用于自动化系统中,以在眼底图像上进行DR分类。但是,这些模型需要大量带注释的图像。在医疗领域,专家的注释昂贵,乏味且耗时。结果,提供了有限数量的注释图像。本文提出了一种半监督的方法,该方法利用未标记的图像和标记的图像来训练一种检测糖尿病性视网膜病的模型。提出的方法通过自我监督的学习使用无监督的预告片,然后使用一小部分标记的图像和知识蒸馏来监督微调,以提高分类任务的性能。在Eyepacs测试和Messidor-2数据集中评估了此方法,仅使用2%的Eyepacs列车标记图像,分别使用0.94和0.89 AUC。
translated by 谷歌翻译
在本文中,我们研究了现代神经网络的事后校准,这个问题近年来引起了很多关注。已经为任务提出了许多不同复杂性的校准方法,但是关于这些任务的表达方式尚无共识。我们专注于置信度缩放的任务,特别是在概括温度缩放的事后方法上,我们将其称为自适应温度缩放家族。我们分析了改善校准并提出可解释方法的表达功能。我们表明,当有大量数据复杂模型(例如神经网络)产生更好的性能时,但是当数据量受到限制时,很容易失败,这是某些事后校准应用(例如医学诊断)的常见情况。我们研究表达方法在理想条件和设计更简单的方法下学习但对这些表现良好的功能具有强烈的感应偏见的功能。具体而言,我们提出了基于熵的温度缩放,这是一种简单的方法,可根据其熵缩放预测的置信度。结果表明,与其他方法相比,我们的方法可获得最先进的性能,并且与复杂模型不同,它对数据稀缺是可靠的。此外,我们提出的模型可以更深入地解释校准过程。
translated by 谷歌翻译